Package: CSHShydRology (via r-universe)

September 13, 2024

Type Package Title Canadian Hydrological Analyses Version 1.2.3 Date 2022-08-11 Author Kevin Shook [cre, aut], Paul Whitfield [aut], Robert Chlumsky [aut], Daniel Moore [aut], Martin Durocher [aut], Matthew Lemieux [ctb], Jason Chiang [ctb], Joel Trubilowicz [ctb], SJ Kim [ctb] Maintainer Kevin Shook <kevin.shook@usask.ca> Description A collection of user submitted functions to aid in the analysis of hydrological data. License AGPL-3 URL https://github.com/CSHS-hydRology/CSHShydRology **Depends** R (>= 4.0.0) Imports fields, Kendall, lubridate, plotrix, timeDate, stringr, ggplot2, ggspatial, stats, raster, sf, dplyr, magrittr, httr, tidyhydat, whitebox, datasets Suggests knitr, testthat, rmarkdown, readr VignetteBuilder knitr LazyData true RoxygenNote 7.2.1 Repository https://cshs-hydrology.r-universe.dev RemoteUrl https://github.com/cshs-hydrology/cshshydrology RemoteRef HEAD RemoteSha 53226a7fee9c0add0e8792b93b9637e48e63225c

Contents

CSHShydRology-package	3
Basic_data_manipulation_functions	4
CAN01AD002	4
CAN05AA008	5
ch_axis_doy	5
ch_binned_MannWhitney	6
ch_booth_plot	8
ch_catchment_hyps	9
ch_checkcatchment	11
ch_checkchannels	13
ch_clear_wd	15
ch_col_transparent	16
ch_contours	17
ch_create_wd	18
ch_cut_block	19
ch_date_subset	19
ch_decades_plot	
ch_doys	21
ch_fdcurve	22
ch_flow_raster	
ch_flow_raster_qa	
ch_flow_raster_trend	
ch_get_ECDE_metadata	
ch_get_url_data	
ch_get_wscstation	
ch_hydrograph_plot	
ch_polar_plot	
ch_polar_plot_prep	
ch_qa_hydrograph	
ch_read_AHCCD_daily	
ch_read_AHCCD_monthly	
ch_read_ECDE_flows	
ch_regime_plot	
ch_rfa_distseason	
ch_rfa_extractamax	
ch_rfa_julianplot	44
ch_rfa_seasonstat	45
ch_slice	46
ch_sub_set_Years	47
ch_tidyhydat_ECDE	48
ch_tidyhydat_ECDE_meta	49
ch_volcano_pourpoints	51
ch_volcano_raster	52
ch_volcano_raster	52
ch_wbt_catchment_onestep	
on_wot_outconnent_onestep	54

ch_wbt_channels	56
ch_wbt_filenames	57
ch_wbt_flow_accumulation	58
ch_wbt_flow_direction	59
ch_wbt_pourpoints	50
ch_wbt_removesinks	52
ch_wtr_yr	53
flowAtlantic	54
HYDAT_list	54
Spatial_hydrology_functions	55
StatisticalHydrology-functions	56
Visualization-functions	57
	68

Index

CSHShydRology-package Functions for Canadian hydrological analyses

Description

CSHShydRology is intended for the use of hydrologists, particularly those in Canada. It will contain functions which focus on the use of Canadian data sets, such as those from Environment Canada. The package will also contain functions which are suited to Canadian hydrology, such as the important cold-region hydrological processes. **CSHShydRology** will also contain functions which work with Canadian hydrological models, such as Raven, CRHM, Watflood, and MESH.

This packages has been developed with the assistance of the Canadian Society for Hydrological Sciences (CSHS) https://cshs.cwra.org/en which is an affiliated society of the Canadian Water Resources Association (CWRA) https://cwra.org/.

The CSHShydRology will contain functions grouped into several themes, including:

Statistical hydrology trend detection, data screening, frequency analysis, regionalization

Basic data manipulations input/conversion/adapter functions, missing data infilling

Visualization data visualization, standardized plotting functions

Spatial hydrology basin delineation, landscape data analysis, working with GIS

Streamflow measurement analysis rating curve analysis, velocity profiles, naturalization

Network design/analysis homogeneity assessment

Ecohydrology fisheries and ecological analysis

Wrappers/unwrappers between other packages and CSHShydRology

References

To cite **CSHShydRology** in publications, use the command citation("CSHShydRology") to get the current version of this citation.

Basic_data_manipulation_functions Basic data manipulation functions

Description

These functions read in or convert values among formats

ch_read_ECDE_flows Reads a file of WSC daily flows from ECDataExplorer

ch_get_ECDE_metadata Reads station meta data from ECDataExplorer

ch_get_wscstation Reads station information from a data file produced by ECDE

ch_read_AHCCD_daily Reads file of daily AHCCD values

ch_read_AHCCD_monthly Reads file of monthly AHCCD values

ch_tidyhydat_ECDE Reads flows using tidyhydat and converts to ECDE format

ch_tidyhydat_ECDE_meta Reads station meta data using **tidyhydat** and converts to ECDE-like format

CAN01AD002

Streamflow data

Description

Daily river discharge for the station 01AD002 on St. John River at Fort Kent, New Brunswick. Data ranges from 1926 to 2014, for basin area of 14700 sq km.

Usage

CAN01AD002

Format

An object of class data. frame with 32234 rows and 2 columns.

Author(s)

Martin Durocher

Source

https://wateroffice.ec.gc.ca/

CAN05AA008

Description

A dataframe of Water Survey of Canada (WSC) daily flows for station 05AA008, CROWSNEST RIVER AT FRANK Alberta. Drainage area 403 km2.

Usage

CAN05AA008

Format

A dateframe with 25252 rows and 5 columns spanning the period 1910-2013.

Details

Variables:

ID StationID
PARAM Parameter 1=Flow, 2=Level
Date R date
Flow Daily flow in m³/s
SYM Water Survey FLags A, B, D, E

Source

Water Survey of Canada

ch_axis_doy

Generates the x axis beginning on specified day of year

Description

Generates an axis for day of year or day of water year; used by ch_regime_plot. Obtaining the day of water year needs to be done separately.

Usage

ch_axis_doy(wyear = 1)

Arguments

wyear

Month of beginning of water year, wyear = 1 (the default) for calendar year, wyear = 10 to start October 1.

Plots a water year axis on a standard R plot

Author(s)

Paul Whitfield

See Also

ch_regime_plot

Examples

```
a <- seq(1, 365)
b <- runif(365)
plot(a, b, type = "p", xlab = "", xaxt = "n")
ch_axis_doy(wyear = 10) # starts in October
```

ch_binned_MannWhitney Compares two time periods of data using Mann-Whitney test

Description

Compares two time periods of data using the Mann-Whitney test. Data are binned based upon a bin size, and data are extracted for two time periods and tests for change between two such periods result can be passed to ch_polar_plot or ch_decades_plot for visualization.

Usage

```
ch_binned_MannWhitney(
    DF,
    step,
    range1,
    range2,
    ptest = 0.05,
    variable = "discharge",
    metadata = NULL
)
```

Arguments

DF	A data frame of hydrometric data from ch_read_ECDE_flows
step	An integer indicating the degree of smoothing eg. 1, 5, 11.
range1	The first and last year of first period, as c(first, last)
range2	The first and last year of second period, as c(first, last)
ptest	The significance level default is 0.05.
variable	Name of variable. Default is 'discharge'
metadata	dataframe of station metadata, default is HYDAT_list

Value

Returns a list containing:

StationID	ID of station
Station_lname	Name of station
bin_width	Smoothing time step
range1	First range of years
range2	Second range of years
p_used	p_value
fail	TRUE if test failed due to missing values
bin_method	method used for binning
test_method	Mann-Whitney U-statistic
series	a data frame containing:
period	period numbers i.e. 1:365/step
period1	median values for each bin in period 1
period2	median values for each bin in period 2
mwu	Mann-Whitney U-statistic for each bin between the two periods
prob	probability of U-statistic for each period
code	significance codes for each bin

Author(s)

Paul Whitfield

References

Whitfield, P.H., Cannon, A.J., 2000. Recent variations in climate and hydrology in Canada. Canadian Water Resources Journal 25: 19-65.

See Also

ch_polar_plot ch_polar_plot_prep ch_decades_plot

Examples

```
data(HYDAT_list)
data(CAN05AA008)
# first example fails due to missing data in both periods
range1 <- c(1960,1969)
range2 <- c(1990,1999)
b_MW <- ch_binned_MannWhitney(CAN05AA008, step = 5, range1, range2, ptest = 0.05)
range1 <- c(1970,1979)
range2 <- c(1990,1999)
b_MW <- ch_binned_MannWhitney(CAN05AA008, step = 5, range1, range2, ptest = 0.05)</pre>
```

ch_booth_plot

Description

A Booth plot is a plot of peaks over threshold flood events with duration on the horizontal and either magnitude (default) or volume on the vertical axis.

Usage

```
ch_booth_plot(events, threshold, title, type = "mag", colour1 = 1, colour2 = 1)
```

Arguments

events	A data frame of POT events from the function ch_get_peaks
threshold	The threshold used by ch_get_peaks
title	Plot title
type	The plot type, either 'mag' (magnitude, the default) or 'vol' (volume)
colour1	A vector of length 12 with line colours of rings or symbols. Defaults to those used by Booth.
colour2	A vector of length 12 with fill colours of rings or symbols. Defaults to those used by Booth.

Value

No value is returned; a standard R graphic is created.

Author(s)

Paul Whitfield

References

Booth, E.G., Mount, J.F., Viers, J.H. 2006. Hydrologic Variability of the Cosumnes River Floodplain. San Francisco Estuary & Watershed Science 4:21.

Whitfield, P.H., and J.W. Pomeroy. 2016. Changes to flood peaks of a mountain river: implications for analysis of the 2013 flood in the Upper Bow River, Canada. Hydrological Processes 30:4657-73. doi: 10.1002/hyp.10957.

See Also

ch_get_peaks

ch_catchment_hyps

Examples

```
threshold <- 0.1 * max(CAN05AA008$Flow) # arbitrary threshold
peaks <- ch_get_peaks(CAN05AA008, threshold)
events <- peaks$POTevents
ch_booth_plot(events, threshold, title = "05AA008", type='mag')
ch_booth_plot(events, threshold, title = "05AA008", type='vol')
```

ch_catchment_hyps Catchment hypsometry

Description

Finds the hypsometric curve, which is the total fraction of the area below vs. elevation, for a given basin.

Usage

```
ch_catchment_hyps(
  catchment,
  dem,
  z_levels = NULL,
  n_{levels} = 10,
  zmin = NULL,
  zmax = NULL,
  quantiles = NULL,
  hypso_plot = FALSE,
  z_units = "m",
  col = "red",
  type = "o",
  xlab = "Fraction of catchment below given elevation",
 ylab = paste0("Elevation (", z_units, ")"),
  add_grid = FALSE,
  . . .
)
```

Arguments

catchment	A sf object containing the catchment divide.
dem	A raster object of the Digital Elevation Model.
z_levels	Vector of elevation levels for the hypsometry. If specified, then no other eleva- tion parameters are required. Default is NULL.
n_levels	If specified, sets number of elevation intervals. Can be used with zmin and zmax. Default is NULL.
zmin	Minimum elevation for hypsometry. If not specified, minimum catchment ele- vation is used. Default is NULL.

zmax	Maximum elevation for hypsometry. If not specified, maximum catchment ele- vation is used. Default is NULL.
quantiles	Vector of elevation quantiles. Default is NULL.
hypso_plot	if TRUE the hypsometric curve is plotted. Default is NULL.
z_units	Elevation units for plot. Default is 'm'.
col	Colour for plot. Default is 'red'.
type	Type of plot. Defailt is 'o' (lines with overplotted points).
xlab	Plot x-axis label.
ylab	Plot y-axis label.
add_grid	If TRUE, a grid is added to the plot. Default is FALSE
	Other parameters for the graph

Details

The elevations may be passed as a vector of elevations, or of elevation quantiles, or as minimum and maximum elevations and the number of elevation intervals. A plot of the curve may also be created.

Value

Returns a data frame of elevations and catchment fractions below.

Author(s)

Dan Moore

Examples

```
## note: example tagged as 'donttest' as it is very slow to execute due to the downloading
library(raster)
# change the following line to specify a directory to hold the data
dir_name <- tempdir(check = FALSE)</pre>
# create directory to store data sets
if (!dir.exists(dir_name)) {
  dir.create(dir_name, recursive = TRUE)
}
# get 25-m dem
dem_fn <- file.path(dir_name, "gs_dem25.tif")</pre>
dem_url <- "https://zenodo.org/record/4781469/files/gs_dem25.tif"</pre>
dem_upc <- ch_get_url_data(dem_url, dem_fn)</pre>
dem_upc
# get catchment boundaries
cb_fn <- file.path(dir_name, "gs_catchments.GeoJSON")</pre>
cb_url <- "https://zenodo.org/record/4781469/files/gs_catchments.GeoJSON"</pre>
cb <- ch_get_url_data(cb_url, cb_fn)</pre>
# quick check plot - all catchments
```

```
ch_checkcatchment
```

```
raster::plot(dem_upc)
plot(cb, add = TRUE, col = NA)
# subset 240 catchment
cb_240 <- cb %>% dplyr::filter(wsc_name == "240")
plot(cb_240, col = NA)
## test function
# test different combinations of arguments
ch_catchment_hyps(cb_240, dem_upc, quantiles = seq(0, 1, 0.1))
ch_catchment_hyps(cb_240, dem_upc, z_levels = seq(1600, 2050, 50))
ch_catchment_hyps(cb_240, dem_upc, n_levels = 6)
ch_catchment_hyps(cb_240, dem_upc)
ch_catchment_hyps(cb_240, dem_upc, zmin = 1600, zmax = 2050)
ch_catchment_hyps(cb_240, dem_upc, zmin = 1600, zmax = 2050, n_levels = 6)
# generate a graph
ch_catchment_hyps(cb_240, dem_upc, hypso_plot = TRUE)
ch_catchment_hyps(cb_240, dem_upc, hypso_plot = TRUE,
             col = "blue", type = "l", ylim = c(1500, 2200))
ch_catchment_hyps(cb_240, dem_upc, hypso_plot = TRUE,
             add_grid = TRUE, quantiles = seq(0, 1, 0.1))
ch_catchment_hyps(cb_240, dem_upc, hypso_plot = TRUE,
             ylab = expression("z ("*10^{-3} ~ "km)"))
# extract specific quantiles (e.g., median and 90%)
```

```
ch_catchment_hyps(cb_240, dem_upc, quantiles = c(0.5,0.9))
```

ch_checkcatchment Check Catchments

Description

Generates a simple map to allow a visual assessment of the catchment boundaries relative to the elevation contours.

Usage

```
ch_checkcatchment(
    dem,
    catchment,
    outlet,
    outlet_label = NULL,
    main_label = "",
    bbox_type = "catchment",
    channel_vec = NULL,
    cb_colour = "red",
```

```
pp_colour = "red",
channel_colour = "blue",
contour_colour = "grey",
plot_na = TRUE,
plot_scale = TRUE,
na_location = "tr",
scale_location = "bl"
```

Arguments

dem	raster DEM that catchments were generated from.
catchment	Catchment polygon (sf object).
outlet	Location of catchment outlet (sf object).
outlet_label	Character label for outlet.
main_label	Main label for catchment plot.
bbox_type	type of bounding box. If 'catchment', then the contours are bounded by the catchment, otherwise they are plotted to the extent of the $\ensuremath{\text{DEM}}$
channel_vec	Vectors of the channels will be plotted if specified.
cb_colour	Colour for catchment outline. Default is "red".
pp_colour	Colour for catchment pour points. Default is "red".
channel_colour	Colour for channel. Default is "blue".
contour_colour	Colour for contours Default is "grey".
plot_na	If TRUE (the default) a north arrow is added to the plot.
plot_scale	If TRUE (the default) a scale bar is added to the plot.
na_location	Location for the north arrow. Default is 'tr', i.e. top-right.
scale_location	Location for the scale bar. Default is 'bl', i.e. bottom-left.

Details

Also generates a table summarizing the catchments, including the coordinates of the outlet point and the catchment area.

Value

TRUE. A map of the catchments is also plotted and the catchment parameters are printed.

Author(s)

Dan Moore and Kevin Shook

See Also

ch_checkchannels

12

ch_checkchannels

Examples

```
# Not tested automatically as requires installation of Whitebox
library(raster)
test_raster <- ch_volcano_raster()</pre>
dem_raster_file <- tempfile(fileext = ".tif")</pre>
no_sink_raster_file <- tempfile("no_sinks", fileext = ".tif")</pre>
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file,</pre>
method = "fill")
# get flow accumulations
flow_acc_file <- tempfile("flow_acc", fileext = ".tif")</pre>
flow_acc <- ch_wbt_flow_accumulation(no_sink_raster_file, flow_acc_file)</pre>
# get pour points
pourpoint_file <- tempfile("volcano_pourpoints", fileext = ".shp")</pre>
pourpoints <- ch_volcano_pourpoints(pourpoint_file)</pre>
snapped_pourpoint_file <- tempfile("snapped_pourpoints", fileext = ".shp")</pre>
snapped_pourpoints <- ch_wbt_pourpoints(pourpoints, flow_acc_file, pourpoint_file,</pre>
snapped_pourpoint_file, snap_dist = 10)
# get flow directions
flow_dir_file <- tempfile("flow_dir", fileext = ".tif")</pre>
flow_dir <- ch_wbt_flow_direction(no_sink_raster_file, flow_dir_file)</pre>
fn_catchment_ras <- tempfile("catchment", fileext = ".tif")</pre>
fn_catchment_vec <- tempfile("catchment", fileext = ".shp")</pre>
catchments <- ch_wbt_catchment(snapped_pourpoint_file, flow_dir_file,</pre>
fn_catchment_ras, fn_catchment_vec)
# check results
ch_checkcatchment(test_raster, catchments, snapped_pourpoints)
```

ch_checkchannels Check Channels

Description

Generates a map of the generated channel network layer.

Usage

```
ch_checkchannels(
   dem,
   channels,
```

```
outlet = NULL,
main_label = "",
channel_colour = "blue",
pp_colour = "red",
contour_colour = "grey"
```

Arguments

t)

Details

Generates a simple map of the drainage network plotted over the contours to allow a visual assessment.

Value

check_map a **ggplot** object of a map with channel layer

Author(s)

Dan Moore

See Also

ch_checkcatchment

Examples

```
# Not tested automatically as requires installation of Whitebox
library(raster)
test_raster <- ch_volcano_raster()
dem_raster_file <- tempfile(fileext = c(".tif"))
no_sink_raster_file <- tempfile("no_sinks", fileext = c(".tif"))</pre>
```

```
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
```

```
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")</pre>
```

get flow accumulations

```
flow_acc_file <- tempfile("flow_acc", fileext = c(".tif"))</pre>
flow_acc <- ch_wbt_flow_accumulation(no_sink_raster_file, flow_acc_file)</pre>
# get flow directions
flow_dir_file <- tempfile("flow_dir", fileext = c(".tif"))</pre>
flow_dir <- ch_wbt_flow_direction(no_sink_raster_file, flow_dir_file)</pre>
channel_raster_file <- tempfile("channels", fileext = c(".tif"))</pre>
channel_vector_file <- tempfile("channels", fileext = c(".shp"))</pre>
channels <- ch_wbt_channels(flow_acc_file, flow_dir_file, channel_raster_file,</pre>
channel_vector_file, 1)
# get pour points
pourpoint_file <- tempfile("volcano_pourpoints", fileext = ".shp")</pre>
pourpoints <- ch_volcano_pourpoints(pourpoint_file)</pre>
snapped_pourpoint_file <- tempfile("snapped_pourpoints", fileext = ".shp")</pre>
snapped_pourpoints <- ch_wbt_pourpoints(pourpoints, flow_acc_file, pourpoint_file,</pre>
snapped_pourpoint_file, snap_dist = 10)
ch_checkchannels(test_raster, channels, snapped_pourpoints)
```

ch_clear_wd

Clear Working Directory

Description

Empties and removes a working directory.

Usage

ch_clear_wd(wd, do_check = TRUE)

Arguments

wd	working directory file path
do_check	If TRUE, the default, the user is asked to confirm the deletion of the working directory. If TRUE, the directory is deleted without confirmation.

Details

The data for raster layers read in as Whitebox files are held on disk rather than in memory

Value

result returns TRUE upon successful execution

Author(s)

Dan Moore

See Also

ch_create_wd to create working directory

Examples

not tested as clearing all files in a given directory cannot be tested in CRAN

create an empty working directory
my_wd <- tempdir()
ch_create_wd(my_wd) # confirm creation</pre>

clear the working directory
ch_clear_wd(my_wd)

ch_col_transparent Adjusts colour codes to introduce transparency

Description

ch_col_transparent is used to adjust colour codes to introduce transparency.

Usage

ch_col_transparent(colour, trans)

Arguments

colour	Vector of colours you wish to add transparency to.
trans	Integer(s) describing the degree of transparency, from ~200 (slightly transparent) to <10 (very transparent).

Value

res returned updated colour code with transparency

See Also

See original code on post in Stack Overflow plot points transparent in R

ch_contours

Examples

```
# plot randomly distributed data
plot(rnorm(20),col='black')
# create a transparent blue colour for plotting
mycol <- ch_col_transparent('blue',100)
# plot more random points in transparent blue colour
points(rnorm(20),col=mycol)
# add transparency to multiple colours
ch_col_transparent( c('red','blue','green'), c(50,100,200))</pre>
```

ch_contours Create Contours

Description

Creates contour lines from a DEM.

Usage

```
ch_contours(dem, zmin = NULL, zmax = NULL, n_levels = 10, z_levels = NULL)
```

Arguments

dem	Raster object of your dem in the desired projection (note: should have had sinks removed).
zmin	Minimum elevation value for contours. If not specified, minimum value 'dem' is used.
zmax	Maximum elevation value for contours. If not specified, maximum value 'dem' is used.
n_levels	Number of contour lines. Default is 10.
z_levels	Levels at which to plot contours. If specified, overrides 'zmin', 'zmax' and 'n_levels'.

Details

Generates contour lines from a DEM, which are returned as an **sf** object. The user can either provide a vector of elevation values by specifying the z_levels argument, or by supplying the minimum and maximum elevations (zmin and zmax) and the number of contour lines (n_levels).

Value

contours_sf sf object containing contours

Author(s)

Dan Moore

Examples

```
# use volcano DEM
dem <- ch_volcano_raster()
# generate contours
contours <- ch_contours(dem)</pre>
```

plot contours map
plot(contours)

ch_create_wd Create working directory

Description

Creates a working directory.

Usage

ch_create_wd(wd)

Arguments

wd name of a directory in which to store files created by WhiteboxTools functions

Value

TRUE returns TRUE upon successful execution

Author(s)

Dan Moore

See Also

ch_clear_wd to clear the working directory

Examples

```
# not tested automatically as will return a warning
ch_create_wd(tempdir())
```

18

ch_cut_block

Description

The function could also be used to get the same period of time from several station for comparison.

Usage

```
ch_cut_block(DF, st_date, end_date)
```

Arguments

DF	A daily streamflow data frame as from ch_read_ECDE_flows
st_date	starting date format is %Y/%m/%d
end_date	ending date format is %Y/%m/%d

Value

Returns a portion of the original dataframe.

Author(s)

Paul Whitfield

Examples

```
data(CAN05AA008)
subset <- ch_cut_block(CAN05AA008,"2000/01/01", "2010/12/31")</pre>
```

ch_date_subset Subsets dates by string

Description

Subsets a data frame by an specified date range, provided as a string by the prd argument. This function is meant to emulate the subsetting capability of the **xts** package.

Usage

ch_date_subset(df, prd)

Arguments

df	data frame of time series data; includes a variable called Date
prd	date range as string formatted as 'YYYY-MM-DD/YYYY-MM-DD'

Value

subsetted data frame

Author(s)

df

Robert Chlumsky

Examples

```
{
    dd <- seq.Date(as.Date("2010-10-01"), as.Date("2013-09-30"), by = 1)
    x <- rnorm(length(dd))
    y <- abs(rnorm(length(dd)))*2
    df <- data.frame("Date" = dd,x,y)
    prd <- "2011-10-01/2012-09-30"
    summary(ch_date_subset(df,prd))}</pre>
```

ch_decades_plot Plots output from ch_binned_MannWhitney for dec

Description

Creates a simple plot comparing two decades from the output of ch_binned_MannWhitney.

Usage

```
ch_decades_plot(mplot)
```

Arguments

mplot List output by the function ch_binned_MannWhitney

Value

A standard R graphic is created.

Author(s)

Paul Whitfield

See Also

ch_decades_plot

ch_doys

Examples

```
range1 <- c(1970, 1979)
range2 <- c(1990, 1999)
b_MW <- ch_binned_MannWhitney(CAN05AA008, step = 5, range1, range2, ptest = 0.05)
ch_decades_plot(b_MW)</pre>
```

ch_doys

Days of year and water year

Description

Converts an array of dates into a dataframe with date, year, month, doy, wyear, dowy. The day of water year is computed from the first of the specified water year month.

Usage

ch_doys(Date, water_yr = 10)

Arguments

Date	an array of R dates, as produced by as.Date()
water_yr	the month starting the water year, default is 10 (October). If a value of 1 is
	specified, the 10 will be used.

Details

Converts a date array into a data frame with years, wateryears, and days of year and of water year.

Value

Returns a dataframe with date information:

Date	in Date format
year	numeric calendar year
month	number calendar month
doy	numeric day of year
wyear	numeric water year starting on day 1 of selected month
dwy	numeric day of water year

Author(s)

Paul Whitfield, Kevin Shook

Examples

```
dd <- seq.Date(as.Date("2010-01-01"), as.Date("2018-01-01"),by = 1)
output <- ch_doys(dd, water_yr=10)
head(output)</pre>
```

ch_fdcurve

Description

A flow duration curve is a plot of flow magnitude against exceedance probability. The plot may contain the Gustard Curves (default) or they can be omitted. The default is for curves to be plotted against probability, but an option is to plot against the normalized exceedance probability. In that case, the x axis represents a normal distribution.

Usage

```
ch_fdcurve(DF, normal = FALSE, gust = TRUE, metadata = NULL)
```

Arguments

DF	a dataframe of daily flows from ch_read_ECDE_flows
normal	If normal = TRUE then exceedance probability is normalized. Default is FALSE.
gust	If TRUE (the default), adds the curves from Gustard et al. 1992 are added.
metadata	dataframe of metadata, defaults to HYDAT_list.

Details

Create a Flow Duration Curve based upon Observations.

Value

Plots the flow duration curve and returns a data frame containing:

exceedance probability probability flow d=flow values

Author(s)

Paul Whitfield

References

Gustard, A., A. Bullock, and J.M. Dixon. 1992. Low flow estimation in the United Kingdom. Institute of Hydrology, 292. Wallingford: Institute of Hydrology.

Vogel, R.M., and N.M. Fennessy. 1994. Flow-duration curves. I: New Interpretation and confidence intervals. Journal of Water Resources Planning and Management ASCE 120:485-504.

Vogel, R.M., and N.M. Fennessy. 1995. Flow duration curves II: A review of applications in water resources planning. Water Resources Bulletin 31:1030-9.

ch_flow_raster

Examples

```
data(HYDAT_list)
data(CAN05AA008)
# plot with Gustard 1992 curves
test <- ch_fdcurve(CAN05AA008, normal = FALSE, gust = TRUE)
# plot with normalized exceedance probability
test <- ch_fdcurve(CAN05AA008, normal = TRUE, gust = FALSE)</pre>
```

ch_flow_raster Raster plot of daily streamflows

Description

Produces a raster plot: years by day of year, showing magnitude of flow. This produces a plot showing the flow data in colours, showing different context than in a hydrograph. High flows are in warm colours.

Usage

```
ch_flow_raster(
   DF,
   rastercolours = c("lightblue", "cyan", "blue", "slateblue", "orange", "red"),
   metadata = NULL
)
```

Arguments

DF	A data frame of daily flow data as read by ch_read_ECDE_flows.
rastercolours	A vector of colours used for flow magnitudes (default c("lightblue","cyan", "blue", "slateblue", "orange", "red")).
metadata	A dataframe of station metadata, defaults to HYDAT_list.

Value

No value is returned; a standard R graphic is created.

Author(s)

Paul Whitfield

See Also

ch_read_ECDE_flows

ch_flow_raster_trend ch_flow_raster_qa

Examples

ch_flow_raster(CAN05AA008)

ch_flow_raster_qa Raster plot of daily streamflows with WSC quality flags

Description

Raster plot with WSC quality flags. This produces a plot showing the flow data in grayscale overlain by the Water Survey of Canada quality flags. Colours are consistent with ECDataExplorer. Raster layout lets the use see the flags in a different context than in a hydrograph.

Usage

ch_flow_raster_qa(DF, metadata = NULL)

Arguments

DF	dataframe of daily streamflow read by ch_read_ECDE_flows
metadata	dataframe of metadata or defaults to "HYDAT_list"

Value

Produces a raster plot: years against day of year, showing the data flags:

A	(Partial) in green
В	(Backwater) in cyan
D	(Dry) in yellow
E	(Estimated) in red

Returns TRUE if executed properly; a standard R graphic is created.

Author(s)

Paul Whitfield

See Also

ch_read_ECDE_flows
ch_flow_raster_trend ch_flow_raster

Examples

```
data(HYDAT_list)
data(CAN05AA008)
qaplot <- ch_flow_raster_qa(CAN05AA008)</pre>
```

24

ch_flow_raster_trend Raster plot and simple trends of observed streamflows by periods

Description

Creates a raster plot plus trend plots for day of year, which are binned by a number of days (step), and the max, min, and median annual discharge across years. The plot contains four panels based upon binned data.

Usage

```
ch_flow_raster_trend(
    DF,
    step = 5,
    missing = FALSE,
    metadata = NULL,
    colours = c("lightblue", "cyan", "blue", "slateblue", "darkblue", "red")
)
```

Arguments

DF	 dataframe of daily flow data as read by ch_read_ECDE_flows
step	- a number indicating the degree of smoothing eg. 1, 5, 11.
missing	If FALSE years with missing data are excluded. If TRUE partial years are included.
metadata	a dataframe of station metadata, default is HYDAT_list.
colours	A vector of colours used for the raster plot. The default is c("lightblue", "cyan" "blue", "slateblue", "darkblue", "red").

Details

The four plots are: (1) The maximum, minimum, and median flow with a trend test for each period: red arrows indicate decreases, blue arrows indicate increases. (2) The scale bar for the colours used in the raster plot, (3) The raster plot with a colour for each period and each year where data exist, and (4) A time series plot of the minimum, median, and maximum annual bin values. If there is no trend (p > 0.05) the points are black. Decreasing trends are in red, increasing trends are in blue.

Value

Returns a list containing:

stationID	Station ID eg. 05BB001
missing	How missing values were used FALSE = used, TRUE = removed
step	number of days in a bin
periods	number of periods in a year
period	period numbers i.e. 1:365/step

bins	values for each period in each year	
med_period	median for each period	
<pre>max_period</pre>	maximum for each period	
min_period	minimum for each period	
tau_period	Kendalls Tau for each period	
prob_period	probability of Tau for each period	
year	years spanning the data	
median_year	median bin for each year	
max_year	maximum bin for each year	
min_year	minimum bin for each year	
tau_median_year		
	value of tau and probability for annual median	
tau_maximum_year		
	value of tau and probability for annual maximum	
tau_minimum_year		
	value of tau and probability for annual minimum	

Author(s)

Paul Whitfield

References

Whitfield, P. H., Kraaijenbrink, P. D. A., Shook, K. R., and Pomeroy, J. W. 2021. The Spatial Extent of Hydrological and Landscape Changes across the Mountains and Prairies of Canada in the Mackenzie and Nelson River Basins Based on data from a Warm Season Time Window, Hydrology and Earth Systems Sciences 25: 2513-2541.

See Also

ch_flow_raster

Examples

```
data(CAN05AA008)
mplot <- ch_flow_raster_trend(CAN05AA008, step=5)</pre>
```

ch_get_ECDE_metadata Reads Environment Canada Date Explorer (ECDE) meta data file

Description

Reads the file that is generated from ECDE 'save favourite stations' to capture the ECDE metadata. The dataframe returned contains 20 fields from ECDE.

Usage

```
ch_get_ECDE_metadata(filename, writefile = NULL)
```

Arguments

filename	The name of the ECDE file, 'FavHydatStations.tb0'.
writefile	Default is NULL, but if it is a filename e.g. 'filename.csv' then the dataframe
	is saved to a csv file.

Value

Returns a dataframe consisting of:

Station	StationID
StationName	Station Name
HYDStatus	Active or Discontinued
Prov	Province
Latitude	
Longitude	
DrainageArea	km ²
Years	Number of years with data
From	Start Year
То	End Year
Reg.	Regulated?
Flow	If TRUE/Yes flow data exists
Level	If TRUE/Yes level data exists
Sed	If TRUE/Yes sediment data exists
OperSched	Operations current - Continuous or Seasonal
RealTime	If TRUE/Yes real time data is available
RHBN	If TRUE/Yes the stations is in the reference hydrologic basin network
Region	Name of regional office operating station
Datum	Elevation datum
Operator	Operator or provider of the data

Author(s)

Paul Whitfield <paul.h.whitfield@gmail.com>

Examples

```
# Not tested by check() as requires downloaded file
filename <- "FavHydatStations.tb0"
meta0 <- ch_get_ECDE_metadata(filename)
meta1 <- ch_get_ECDE_metadata(filename, writefile="study52_metadata.csv")</pre>
```

ch_get_peaks

Extracts peak flows over a threshold

Description

This function is development code being shared as is. It is expected that the user will be interested in the data frame returned for POT analysis and for plotting (i.e. ch_booth_plot).

This function retrieves peaks greater than or equal to the prescribed threshold. It returns a data frame of peak characteristics suitable for subsequent analysis.

The portion under development is returns a list of the flows during an event with the values of the four preceding days and three subsequent days. If the peak is a single point the fragment is nine points long; if the events is longer the fragment contains all days above the threshold and eight additional days.

Usage

ch_get_peaks(dataframe, threshold)

Arguments

dataframe	a data frame of streamflow data containing columns named 'Date' and 'Flow'
threshold	a value for the threshold. Values above the threshold are tested for peaks.

Value

Returns a list containing:

POTevents	a dataframe contining details of the events
events	a vector with the value 0 when the flow is below the threshold and 1 when above.
event_num	a vector with the value 0 when the flow is below a threshold or the index of the events when the threshold was exceeded. i.e. 1,2,3, etc
st_date	start date of events
case	a list of the daily flows in each individual event (see details for more information)

The POTevents data frame contains five columns:

28

ch_get_url_data

st_date	starting date of event
max_date	date of maximum in the event
max	maximum discharge during event
volume	flow volume during the event
duration	length of the event in days

The case list contains the flows during an event and also for four preceding and subsequent days. Each event will have a length between nine to n days in length. Note: in rare cases where the event is in progress when data becomes available the event might be shorter than nine days long.

Author(s)

Paul Whitfield

References

Burn, D.H., Whitfield, P.H., Sharif, M., 2016. Identification of changes in floods and flood regimes in Canada using a peaks over threshold approach. Hydrological Processes, 39: 3303-3314. DOI:10.1002/hyp.10861

Whitfield, P.H., and J.W. Pomeroy. 2016. Changes to flood peaks of a mountain river: implications for analysis of the 2013 flood in the Upper Bow River, Canada. Hydrological Processes 30:4657-73. doi: 10.1002/hyp.10957.

See Also

ch_booth_plot

Examples

```
CAN05AA008 <- CAN05AA008
threshold <- 0.5*max(CAN05AA008$Flow) # arbitrary threshold
my_peaks <- ch_get_peaks(CAN05AA008, threshold)
str(my_peaks)</pre>
```

ch_get_url_data Gets remote data sets

Description

Accesses data sets, via a url the first time, saves them locally, then accesses them locally after the first time the script is executed.

Usage

```
ch_get_url_data(gd_url, gd_filename, quiet = FALSE)
```

Arguments

gd_url	url for accessing data set
gd_filename	name of file on local drive, including full path
quiet	Optional. If FALSE (the default) error/warning messages are printed if the data cannot be found.

Value

Returns a data frame (from a .csv file), a raster object (from a .tif file), or an sf object (from a GeoJSON file).

Author(s)

Dan Moore

Examples

example not tested automatically as multiple large data files are downloaded

```
# Tested using files in the Upper Penticton Creek
# zenodo repository https://zenodo.org/record/4781469
library(ggplot2)
library(raster)
# create directory to store data sets
dir_name <- tempdir(check = FALSE)</pre>
if (!dir.exists(dir_name)) {
  dir.create(dir_name)
}
# test with soil moisture data in csv format
sm_fn <- file.path(dir_name, "sm_data.csv")</pre>
sm_url <- "https://zenodo.org/record/4781469/files/sm_data.csv"</pre>
sm_data <- ch_get_url_data(sm_url, sm_fn)</pre>
head(sm_data)
# test with tif/tiff file containing a dem
ra_fn <- file.path(dir_name, "gs_dem25.tif")</pre>
ra_url <- "https://zenodo.org/record/4781469/files/gs_dem25.tif"</pre>
ra_data <- ch_get_url_data(ra_url, ra_fn)</pre>
plot(ra_data)
# test with GeoJSON
gs_fn <- file.path(dir_name, "gs_soilmaps.GeoJSON")</pre>
gs_url <- "https://zenodo.org/record/4781469/files/gs_soilmaps.GeoJSON"
gs_data <- ch_get_url_data(gs_url, gs_fn)</pre>
ggplot(gs_data) +
  geom_sf(aes(fill = new_key)) +
  labs(fill = "Soil class",
       x = "UTM Easting (m)",
```

```
y = "UTM Northing (m)") +
coord_sf(datum = 32611) +
theme_bw()
```

ch_get_wscstation Reads station information from a data file produced by ECDE

Description

Retrieves station information for an individual Water Survey of Canada site, based on stationID; adds a text string at position 21 that combines key elements for a title.

Usage

ch_get_wscstation(stnID, metadata = NULL)

Arguments

stnID	A Water Survey of Canada station number	
metadata	a data frame of station information from ECDataExplorer. 'HYDAT_list' is supplied with this package.	The data frame

Value

Returns a line from a data frame with 21 variables

Station	StationID
StationName	Station Name
HYDStatus	Active or Discontinued
Prov	Province
Latitude	
Longitude	
DrainageArea	Area in km ²
Years	# of years with data
From	Start Year
То	End Year
Reg.	Regulated or natural
Flow	if TRUE/Yes flow data is available
Level	if TRUE/Yes water level data is available
Sed	if TRUE/Yes sediment data is available
OperSched	Current operation schedule- Continuous or Seasonal
RealTime	if TRUE/Yes real itme data exists

RHBN	if TRUE/Yes is in the reference hydrologic basin network
Region	WSC Region
Datum	Datum used
Operator	Agency responsible for collecting data
Station_lname	Added field combining StationID, StationName, Province and if station is RHBN an * is added

Author(s)

Paul Whitfield

Examples

```
data("HYDAT_list")
s_info <- ch_get_wscstation("05BB001", metadata = HYDAT_list)
title <- s_info[21]
print(title)</pre>
```

ch_hydrograph_plot Hydrograph plot

Description

Creates a hydrograph plot for simulated, observed, and inflow hydrograph series, including precipitation if provided. The secondary y axis will be used to plot the precipitime series.

Usage

```
ch_hydrograph_plot(
  flows = NULL,
  precip = NULL,
  prd = NULL,
  winter_shading = FALSE,
  winter_colour = "cyan",
  range_mult_flow = NULL,
  range_mult_precip = 1.5,
  flow_labels = NULL,
  ylabel = NULL,
  precip_label = "Precipitation [mm]",
  leg_pos = NULL,
  leg_box = NULL,
  zero_axis = TRUE
)
```

Arguments

flows	data frame of flows to plot
precip	data frame of precipitation values to plot
prd	period to use in plotting
winter_shading	optionally adds a transparent cyan shading for the December 1st to March 31st period in each year that is plotted. Default is FALSE.
winter_colour	colour to use in winter shading polygons
range_mult_flow	N
	range multiplier for max value in hydrograph. This is useful in preventing over- lap if precip is also plotted. This value should not be less than 1.0, otherwise the values will be cutoff in the plot.
range_mult_pre	cip
	range multiplier for max value in precipitation plot (default 1.5)
flow_labels	string vector of labels for flow values
ylabel	text label for y-axis of the plot (default 'Flow [m^3/s]')
precip_label	text label for precipitation y-axis (default 'Precipitation [mm]')
leg_pos	string specifying legend placement on plot e.g. 'topleft', 'right', etc., and is consistent with the legend function options. If NULL, the function will place the legend left, if precip added, on the topleft otherwise).
leg_box	boolean on whether to put legend in an opaque white box or not. If NULL (the default), the function will automatically not use a white box and leave the back-ground of the legend transparent.
zero_axis	fixes the y axis to start exactly at zero (default TRUE). By default, R will plot the values with a small buffer for presentation. Be warned that if this option is set to TRUE, the minimum value is set to zero without checking if any flow values are less than zero. This option should not be used for reservoir stage plotting, since most reservoir stage is typically reported as an elevation.

Details

Assumes that the supplied time series have the same length and duration in time. If this is not true, then the defined period or period calculated from the first available flow series will be used to determine the plotting limits in time. The supplied time series should be in **xts** format. Note that a plot title is purposely omitted in order to allow the automatic generation of plot titles.

Value

Returns TRUE if the function is executed properly.

Author(s)

Robert Chlumsky

Examples

```
# example with synthetic random data
dd <- seq.Date(as.Date("2010-10-01"), as.Date("2013-09-30"),by = 1)
x <- abs(rnorm(length(dd)))
y <- abs(rnorm(length(dd))) * x
df <- data.frame("Date" = dd, x, y)
myprd <- "2011-10-01/2012-09-30"
precip <- data.frame("Date" = dd," precip" = abs(rnorm(length(dd))) * 10)
# basic hydrograph plot
ch_hydrograph_plot(flows = df, winter_shading = FALSE)
# with different labels and winter shading
ch_hydrograph_plot(flows = df, winter_shading = TRUE,
flow_labels = c("simulated", "observed"))
# add precipitation, increase the plot ranges to separate flows and precip, and add a legend box
ch_hydrograph_plot(flows = df, precip = precip, range_mult_flow = 1.7,
range_mult_precip = 2, leg_box = TRUE)
```

ch_polar_plot

Polar plot of daily streamflows

Description

Produces a polar plot similar to that used in *Whitfield and Cannon, 2000*. It uses output from the function ch_binned_MannWhitney or a data structure created using the function ch_polar_plot_prep.

Usage

```
ch_polar_plot(
    bmw,
    lcol1 = c("black", "gray50"),
    lcol2 = c("black", "gray50"),
    lfill = c("yellow", "green"),
    lsig = c("red", "blue")
)
```

Arguments

bmw	<pre>output from ch_binned_MannWhitney</pre>
lcol1	line colour, default is c("black", "gray50")
lcol2	point colour, default is c("black", "gray50")
lfill	fill colour, default is c("yellow", "green")
lsig	significance symbol colour, default is c("red", "blue")

34

Value

No value is returned; a standard R graphic is created.

Author(s)

Paul Whitfield

References

Whitfield, P.H. and A.J. Cannon. 2000. Polar plotting of seasonal hydrologic and climatic data. Northwest Science 74: 76-80.

Whitfield, P.H., Cannon, A.J., 2000. Recent variations in climate and hydrology in Canada. Canadian Water Resources Journal 25: 19-65.

See Also

ch_binned_MannWhitney ch_polar_plot_prep

Examples

```
range1 <- c(1970,1979)
range2 <- c(1990,1999)
b_MW <- ch_binned_MannWhitney(CAN05AA008, step = 5, range1, range2,
ptest <- 0.05)
ch_polar_plot(b_MW)</pre>
```

ch_polar_plot_prep Creates a data structure to be passed to ch_polar_plot

Description

Could be used to move data from a different type of analysis different to the ch_binned_MannWhitney function which uses flows. The two series need to be of the same length and their length is related to the step size. For examples, for five day periods there will be 73 periods.

Usage

```
ch_polar_plot_prep(
  station,
  plot_title,
  step,
  x0,
  x1,
  stat,
  prob,
  test_s,
  variable = "discharge",
```

```
bin_method = "unstated",
test_method = "unstated",
lline1 = "Period 1",
lline2 = "Period 2",
pvalue = 0.05
)
```

Arguments

station	Typically a station number
<pre>plot_title</pre>	Polar plot title - usually a station name
step	The number of days binned
x0	Time series of length n for a single seasonal cycle
x1	Time series of length n for a single seasonal cycle
stat	Time series of length n for statistical test value for each bin
prob	Time series of length n of probability of test value
test_s	Vector with values of -1, 0, 1 for significance, -1 negative, 1 positive, 0 not significant
variable	Name of variable plotted. Default is 'discharge'
bin_method	Default is 'unstated'
test_method	Default is 'unstated'
lline1	Names of first period, default is 'Period 1'
lline2	Names of second period, default is 'Period 2'
pvalue	Value of p used. Default is 0.05

Value

Returns a list containing:

StationID	ID of station
Station_lname	Name of station
variable	Name of variable
bin_width	Smoothing time step in days
range1	First range of years
range2	Second range of years
p_used	p_value
fail	TRUE if test failed due to missing values
bin_method	Method used for binning
test_method	Mann-Whitney U
series	A data frame containing six columns

The series data frame contains

36

ch_qa_hydrograph

period	period numbers i.e. 1:365/step
period1	median values for each bin in period 1
period2	median values for each bin in period 2
mwu	Mann Whitney U-statistic for each bin between the two periods
prob	probability of U for each period
code	significance codes for each bin

Author(s)

Paul Whitfield

References

Whitfield, P.H. and A.J. Cannon. 2000. Polar plotting of seasonal hydrologic and climatic data. Northwest Science 74: 76-80.

Whitfield, P.H., Cannon, A.J., 2000. Recent variations in climate and hydrology in Canada. Canadian Water Resources Journal 25: 19-65.

See Also

ch_binned_MannWhitney ch_polar_plot

ch_qa_hydrograph	Plots a hydrograph with the data quality symbols and returns a repo	
	on qa symbols and missing data.	

Description

Plots a hydrograph of a WSC daily data file read from from ECDataExplorer (ECDE). The hydrograph shows individual days with data quality symbols [SYM] in colour and counts cases of each and reports them in the legend. The colours and symbols are those produced by ECDataExplorer.

There is an option is to provide start and end dates to show only part of the time period for which data exists and the plot is annotated to indicate this. Counts of missing observations is also provided in the legend.

Usage

```
ch_qa_hydrograph(
   DF,
   st_date = NULL,
   end_date = NULL,
   cts = TRUE,
   rescale = FALSE,
   sym_col = c("black", "green", "cyan", "yellow", "red", "white"),
   metadata = NULL
)
```

Arguments

DF	$Data\ frame\ retrieved\ from\ ECD ata\ Explorer\ as\ returned\ by\ the\ function\ ch_read_ECDE_flows.$
st_date	Optional start date in the form 'yyyy-mm-dd'. Default is NULL.
end_date	Optional end date in the form 'yyyy-mm-dd'. Default is NULL.
cts	If TRUE (the default) shows the counts of SYM in the legend. If FALSE the counts are omitted as in ECDE.
rescale	If FALSE (the default), the y-axis scaling is determined by the time period. If TRUE then determined by the whole dataset.
sym_col	Colours used for SYM; default is those used in ECDE ("black", "green", "cyan", "yellow", "red", "white"). The final "white" can be changed to highlight missing data points.
metadata	a dataframe of station metadata, default is HYDAT_list.

Value

Produces a plot and returns a list that contains:

station name or title used

st_date	starting date
end_date	ending data
n	the number of data points
sym_count	summary of the SYM counts
missing	number of missing data

Author(s)

Paul Whitfield

Examples

```
m_test <- ch_qa_hydrograph(CAN05AA008)
m_test <- ch_qa_hydrograph(CAN05AA008, st_date="1980-01-01", end_date="1999-12-31")</pre>
```

ch_read_AHCCD_daily Reads AHCCD daily file

Description

This program reads an Adjusted and Homogenized Canadian Climate Data (AHCCD) of daily precipitation or temperatures. The values are arranged as month x day, which makes them difficult to read using standard R functions.

Usage

ch_read_AHCCD_daily(daily_file)

Arguments

daily_file Required. Name of the file to be read.

Value

If successful, returns the values in a data frame, consisting of the date, the value and the data code.

Author(s)

Kevin Shook

References

Daily AHCCD data are available from http://crd-data-donnees-rdc.ec.gc.ca/CDAS/products/ EC_data/AHCCD_daily/. Any use of the data must cite Mekis, E and L.A. Vincent, 2011: An overview of the second generation adjusted daily precipitation dataset for trend analysis in Canada. Atmosphere-Ocean, 49 (2), 163-177.

See Also

ch_read_AHCCD_monthly

Examples

```
# Not tested automatically as requires a file
stoon_daily_tmax <- ch_read_AHCCD_daily("dx40657120.txt")</pre>
```

ch_read_AHCCD_monthly Reads AHCCD monthly file

Description

This program reads an Adjusted and Homogenized Canadian Climate Data (AHCCD) data of precipitation or temperatures. The values are arranged as year x month, which makes them difficult to read using standard R functions.

Usage

```
ch_read_AHCCD_monthly(monthly_file = NULL)
```

Arguments

monthly_file Required. Name of the file to be read.

If successful, returns the values in a dataframe, consisting of the year, the month, the value and the data code.

Author(s)

Kevin Shook

References

Any use of the data must cite Mekis, E and L.A. Vincent, 2011: An overview of the second generation adjusted daily temperature and precipitation dataset for trend analysis in Canada. Atmosphere-Ocean, 49 (2), 163-177.

See Also

ch_read_AHCCD_daily

Examples

```
# Not tested automatically as requires a file
Stoon_monthly_precip <- ch_read_AHCCD_monthly("mt4057120.txt")
NB_monthly_tmean <- ch_read_AHCCD_monthly("mm4045695.txt")</pre>
```

ch_read_ECDE_flows *Reads a file of WSC daily flows from ECDataExplorer (ECDE)*

Description

Reads in a file WSC daily flows as returned from the Windows program ECDataExplorer, converts the Date, and omits the last 3 lines as these contain the data disclaimer and not data.

Usage

```
ch_read_ECDE_flows(filename)
```

Arguments

```
filename Datafile retrieved from ECDataExplorer.
```

Value

Returns a dataframe with the last three rows removed:

ID	stationID
PARAM	Parameter 1 for Flow 2 for Level
Date	original charater string converted to date format
Flow	Daily mean flow m ³ /sec
SYM	Quality flag

40

ch_regime_plot

Author(s)

Paul Whitfield

Examples

```
# Using a dummy file name as an example
mfile <- "04JD005_Daily_Flow_ts.csv"
mdata <- ch_read_ECDE_flows(mfile)</pre>
```

ch_regime_plot Plots the regime of daily streamflows using quantiles

Description

Produces a regime hydrograph similar to that in the reference. It shows the flow quantiles for each day of the year and the maximum and minimum. Parameters can be set to change colours and set the y-scale to allow plots of same scale to be produced.

Usage

```
ch_regime_plot(
    DF,
    wyear = 1,
    colour = TRUE,
    mx = 1,
    metadata = NULL,
    quant = c(0.95, 0.9, 0.75, 0.5, 0.25, 0.1, 0.05)
)
```

Arguments

DF	data frame of daily flow data
wyear	set wyear = 10 for October, water year = 1 for calendar year, can be any month
colour	if TRUE plot is in colour, if FALSE plot is grayscale.
mx	set the maximum y value; if $= 1$ then maximum value of the flows is used to set
metadata	a data frame of metadata, defaults to HYDAT_list. the y-axis value. The value of mx can be specified to produce a series of plots with the same scale.
quant	quantiles; default is quant = $c(0.95, 0.9, 0.75, 0.5, 0.25, 0.1, 0.05)$. Can be changed but the length must be 7 and the 4th value must be 0.5 (median)

Value

No value is returned; a standard R graphic is created.

Author(s)

Paul Whitfield

References

MacCulloch, G. and P. H. Whitfield (2012). Towards a Stream Classification System for the Canadian Prairie Provinces. Canadian Water Resources Journal 37: 311-332.

Examples

```
data(CAN05AA008)
ch_regime_plot(CAN05AA008, colour = TRUE, wyear = 1)
```

ch_rfa_distseason Distance in seasonal space

Description

Calculates a matrix of distances between points in the seasonal space that characterizes timing and regularity. It is equivalent to Euclidean distance applied to regularity (radius) and timing (angle) separately.

Usage

```
ch_rfa_distseason(x, ...)
## S3 method for class 'numeric'
ch_rfa_distseason(x, a, w = 1/pi, ...)
## S3 method for class 'data.frame'
ch_rfa_distseason(x, w = 1/pi, ...)
## S3 method for class 'formula'
ch_rfa_distseason(form, x, w = 1/pi, ...)
```

x, a	Coordinates in the seasonal space. Can be a data.frame or vectors with radius x and angle a.
	Other parameters.
W	Weight to favor angle over radius. By default it is $1/pi$, which bring angle in the interval $[0,1]$.
form	Formula and dataset providing the coordinates of the seasonal space. Must be of the form radius ~ angle.

Returns a matrix of distances between points in the seasonal space that characterizes timing and regularity.

Author(s)

Martin Durocher

References

Durocher, M., Burn, D. H., & Ashkar, F. (2019). Comparison of estimation methods for a nonstationary index-flood model in flood frequency analysis using peaks over threshold. https://doi.org/10.31223/osf.io/rnepc

See Also

ch_rfa_seasonstat

Examples

ch_rfa_distseason(radius ~ angle , scoord)

ch_rfa_extractamax Extracts the annual maxima of a daily time series

Description

Extracts the annual maxima of a daily time series

Usage

```
ch_rfa_extractamax(x, ...)
## S3 method for class 'formula'
ch_rfa_extractamax(form, x, tol = 0, ...)
## Default S3 method:
ch_rfa_extractamax(x, tol = 0, nlab = "n", ylab = "yy", ...)
```

Arguments

х	Data. If no formula is passed, the first column must be the value and the second
	the date.
	Other parameters.
form	Formula of the form value ~ date that specifies the variable from which the
	annual maximums are extracted and a date variable.
tol	Filter the years having less than tol days.
nlab,ylab	Names for the added columns representing respectively the number of yearly observations and the year. If set to NULL the given column is not added.

Value

Returns a data frame containing the annual (Monthly) maxima, the date and the number of observations during the year.

Author(s)

Martin Durocher

Examples

```
out <- ch_rfa_extractamax(flow ~ date, CAN01AD002, tol = 350)
head(out)</pre>
```

ch_rfa_julianplot *Circular plotting by day of year*

Description

Create axis for plotting circular statistics in a unitary circle.

Usage

```
ch_rfa_julianplot(
    rose.col = "gray40",
    rose.lwd = 1.5,
    rose.cex = 1.5,
    rose.radius = seq(0.25, 1, 0.25),
    ...
)
```

<pre>rose.col, rose.lwd, rose.cex</pre>		
	Properties of the polar axes.	
rose.radius	Vector of the position of the circular axis.	
	Other parameter passed to points.	

```
ch_rfa_seasonstat
```

Returns a empty rose plot by day of year

Author(s)

Martin Durocher

See Also

ch_rfa_seasonstat.

Examples

```
data(flowAtlantic)
```

ch_rfa_julianplot()

```
ss <- ch_rfa_seasonstat(date ~ id, flowAtlantic$ams)
```

```
points(y ~ x, ss, pch = 16, col = cut(ss[,'radius'], c(0,.5,.75,1)))
```

ch_rfa_seasonstat Seasonal statistics for flood peaks

Description

Return the circular or seasonal statistics of flood peaks. The angle represents the mean timing of the floods and the radius its regularity. For example, a radius of one represents perfect regularity. Can perform the analyses on multiple sites.

Usage

```
ch_rfa_seasonstat(x, ...)
## S3 method for class 'data.frame'
ch_rfa_seasonstat(x, ...)
## S3 method for class 'formula'
ch_rfa_seasonstat(form, x, ...)
```

Х	Data. If data.frame with two columns, they must be respectively the date and a site variable.
	Other parameters.
form	Formula that specifies the date and site variable. Must be of the form date \sim site.

Returns the circular or seasonal statistics of flood peaks.

dt <- ch_rfa_extractamax(flow~date, CAN01AD002)\$date</pre>

Author(s)

Martin Durocher

References

Burn, D.H. (1997). Catchment similarity for regional flood frequency analysis using seasonality measures. Journal of Hydrology 202, 212-230. https://doi.org/10.1016/S0022-1694(97)00068-1

See Also

ch_rfa_distseason

Examples

```
ch_rfa_seasonstat(dt)
## Illustration of the analysis of multiple sites
F0 <- function(ii) data.frame(site = ii, dt = sample(dt, replace = TRUE))
x <- lapply(1:10, F0)
x <- do.call(rbind, x)
st <- ch_rfa_seasonstat(dt ~ site, x)
ch_rfa_julianplot()
points(y ~ x, st, col = 2, pch = 16)</pre>
```

ch_slice

Converts doy or dwy into a factor that is used to bin data

Description

Converts a series of a variable such as day of year into numbered bins. Whenever the number of bins does not divide in 365 evenly a message showing the number of bins created and the number of days added to the last bin is provided.

Simply put, ch_slice is used to convert doy into a factor which is a number of bins per year. A year can be converted into any number of bins; slice does it based upon a number of days. So when you send it an array of doy it slices that into bins of the desired width. For example, if the step is 5. They 365/5 gives 73 bins and because of leap years there might be one extra day added every four years to the final bin.

To illustrate for a bin of 5 days: doy: 1 2 3 4 5 6 7 8 9 10 11 12 Bin: 1 1 1 1 1 2 2 2 2 2 3 3

ch_sub_set_Years

Usage

ch_slice(doy, step)

Arguments

doy	A vector of the day of calendar year for the dataset
step	Width of bin in days

Value

Returns a vector of bin numbers that is used as a factor for each day in the dataset and provides a message indicating the handling of partial bins

Author(s)

Paul Whitfield, Kevin Shook

See Also

ch_binned_MannWhitney ch_flow_raster_trend

Examples

```
doy <- c(1:365)
# first 30 days are 1, 31-60 are 2 etc
dice <- ch_slice(doy, 30)
plot(doy, dice)</pre>
```

ch_sub_set_Years Helper function for selecting points for an axis

Description

Sub-samples a vector every n places. Many times there are so many years the labels on the plot overlap. ch_sub_set_years returns the position and label for the subset. The function can be used on any type of simple array.

Usage

ch_sub_set_Years(years, n)

years	a vector of years
n	sample size

a list containing:

position	array of axis positions
label	array of labels

Author(s)

Paul Whitfield

Examples

```
myears <- c(1900:2045)
myears <- ch_sub_set_Years(myears, 20)
myears
a <- LETTERS
my_alpha <- ch_sub_set_Years(a, 5)
my_alpha</pre>
```

ch_tidyhydat_ECDE Converts a tidyhydat daily flow data tibble to ECDE format

Description

Accessing daily flow data using **tidyhydat** is quick and efficient. However, it sometimes conflicts with other functions as **tidyhydat** changes variable names and some default entries. This function converts a tibble obtained from a **tidyhydat** tibble to a dataframe with standard Environment and Climate Change Canada Data Explorer (ECDE) names.

Usage

```
ch_tidyhydat_ECDE(data)
```

Arguments

```
data
```

Tibble of daily flows retrieved using **tidyhydat** function hy_daily_flows.

Value

A dataframe or a list of flows with formats consistent with datafiles read using ch_read_ECDE_flows:

ID	stationID
PARAM	Parameter 1 for Flow 2 for Level
Date	original charater string converted to date format
Flow	Daily mean flow m ³ /sec
SYM	Quality flag

48

Author(s)

Paul Whitfield

See Also

ch_tidyhydat_ECDE_meta

Examples

```
library(tidyhydat)
mdata <- hy_daily_flow(station_number=c("05CK004"))
m_data <- ch_tidyhydat_ECDE(mdata)
mdata <- hy_daily_flows(station_number=c("05CK004","08MF005","05BB001"))
mnew <- ch_tidyhydat_ECDE(mdata)
str(mnew[[1]])
str(mnew[[2]])
str(mnew[[2]])
#note the order is in increasing alphabetical order</pre>
```

ch_tidyhydat_ECDE_meta

Creates an ECDE-like dataframe of metadata from tidyhydat

Description

Extracts tombstone (meta) data for stations from **tidyhydat** in a format similar to that used by the Environment Canada Data Explorer (ECDE). The default does not capture all the fields in ECDE, which includes the most recent status of many fields such as operating schedule. Returning these values slows the function, particularly when all WSC stations are selected.

Usage

ch_tidyhydat_ECDE_meta(stations, all_ECDE = FALSE)

stations	A vector of WSC station IDs, i.e. c("05BB001", "05BB003", "05BB004", "05BB005"). If stations = "all" then values are returned for all stations. Note that you should ensure that the tidyhydat database is up to date, if you select stations = "all", so that the most recent set of stations is used.
all_ECDE	Should all ECDE values be returned? If FALSE the default, then values of Flow, Level, Sed, OperSched, Region, Datum, and Operator are omitted or will differ from the ECDE values. If all_ECDE = TRUE, then the function will return values identical to ECDE. Note that setting all_ECDE = TRUE will result in very long execution times, as it is necessary to extract many daily values for each station to determine the values of Flow, Level, Sed, and OperSched to determine the final values.

Returns a list with three items:

- meta a dataframe of metadata from **tidyhydat** in ECDE form (not all ECDE fields are reproduced in this summary)
- H_version version information, and
- th_meta a dataframe with all tidyhdat fields including:
 - Station StationID
 - StationName Station Name
 - HYDStatus Active or Discontinued
 - Prov Province
 - Latitude
 - Longitude
 - DrainageArea km²
 - Years number of years with data
 - From Start Year
 - To End Year
 - Reg. Regulated?
 - Flow not captured (differs from ECDE), unless all_ECDE = TRUE
 - Level not captured (differs from ECDE), unless all_ECDE = TRUE
 - Sed not captured (differs from ECDE), unless all_ECDE = TRUE
 - OperSched not captured (differs from ECDE), unless all_ECDE = TRUE
 - RealTime if TRUE/Yes
 - RHBN if TRUE/Yes is in the reference hydrologic basin network
 - Region number of region instead of name (differs from ECDE), unless all_ECDE = TRUE
 - Datum reference number (differs from ECDE), unless all_ECDE = TRUE
 - Operator reference number (differs from ECDE), unless all_ECDE = TRUE

Author(s)

Paul Whitfield, Kevin Shook

See Also

ch_get_ECDE_metadata ch_tidyhydat_ECDE

```
# This example requires \pkg{tidyhydat} to be installed
# the \code{HYDAT} database, which makes automatic checking slow
stations <- c("05BB001", "05BB003", "05BB004", "05BB005")
result <- ch_tidyhydat_ECDE_meta(stations)
metadata <- result[[1]]
version <- result[[2]]</pre>
```

ch_volcano_pourpoints

```
# This example is not run, as it can take over an hour to execute
# It is intended to be used by the package maintainers to update \code{HYDAT_list}
result <- ch_tidyhydat_ECDE_meta("all", TRUE)
HYDAT_list <- result$meta</pre>
```

ch_volcano_pourpoints Creates a sample file of pour points

Description

Creates a file of pour points for the volcano DEM. The pour points define the outlets of sub-basins. These pour points are used by examples within other functions.

Usage

```
ch_volcano_pourpoints(pp_shp)
```

Arguments

pp_shp Name for shapefile to hold pour points

Value

Returns an **sf** object containing 2 pour points for the volcano DEM. The pour points are also written to the specified file.

Author(s)

Dan Moore and Kevin Shook

See Also

ch_volcano_raster ch_wbt_pourpoints

```
pourpoint_file <- tempfile("volcano_pourpoints", fileext = c(".shp"))
pourpoints <- ch_volcano_pourpoints(pourpoint_file)
plot(pourpoints)</pre>
```

ch_volcano_raster Create Test Raster

Description

Creates a **raster** object of land surface elevations, as used to test/demonstrate many functions requiring a digital elevation model (DEM).

Usage

```
ch_volcano_raster()
```

Details

No arguments are required as the DEM is created from the base volcano matrix of elevations.

Value

Returns a raster object of land surface elevations.

Author(s)

Dan Moore and Kevin Shook

Examples

```
test_raster <- ch_volcano_raster()</pre>
```

ch_wbt_catchment Delineate catchment boundaries

Description

Delineate catchment boundaries

Usage

```
ch_wbt_catchment(
   fn_pp_snap,
   fn_flowdir,
   fn_catchment_ras,
   fn_catchment_vec,
   return_vector = TRUE
)
```

ch_wbt_catchment

Arguments

fn_pp_snap	Name of file containing snapped pour points
fn_flowdir	Name of file containing flow accumulations.
fn_catchment_ra	as
	Raster file to contain delineated catchment.
fn_catchment_ve	2C
	Vector file to contain delineated catchment.
return_vector	If TRUE (the default) a vector of the catchment will be returned.

Value

If return_vector == TRUE a vector of the catchment is returned. Otherwise nothing is returned.

Author(s)

Dan Moore and Kevin Shook

See Also

ch_wbt_catchment_onestep

```
# Not tested automatically as requires installation of Whitebox
library(raster)
test_raster <- ch_volcano_raster()
dem_raster_file <- tempfile(fileext = ".tif")
no_sink_raster_file <- tempfile("no_sinks", fileext = ".tif")</pre>
```

```
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
```

```
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")</pre>
```

```
# get flow accumulations
flow_acc_file <- tempfile("flow_acc", fileext = ".tif")
flow_acc <- ch_wbt_flow_accumulation(no_sink_raster_file, flow_acc_file)</pre>
```

```
# get pour points
pourpoint_file <- tempfile("volcano_pourpoints", fileext = ".shp")
pourpoints <- ch_volcano_pourpoint_file)
snapped_pourpoint_file <- tempfile("snapped_pourpoints", fileext = ".shp")
snapped_pourpoints <- ch_wbt_pourpoints(pourpoints, flow_acc_file, pourpoint_file,
snapped_pourpoint_file, snap_dist = 10)</pre>
```

```
# get flow directions
flow_dir_file <- tempfile("flow_dir", fileext = ".tif")
flow_dir <- ch_wbt_flow_direction(no_sink_raster_file, flow_dir_file)
fn_catchment_ras <- tempfile("catchment", fileext = ".tif")</pre>
```

```
fn_catchment_vec <- tempfile("catchment", fileext = ".shp")
catchments <- ch_wbt_catchment(snapped_pourpoint_file, flow_dir_file,
fn_catchment_ras, fn_catchment_vec)</pre>
```

ch_wbt_catchment_onestep

Delineates a catchment in a single step

Description

Calls all of the ch_wbt and other functions required to do the sub-tasks required to delineate a catchment. The names of files to be created are taken from the list created by the function ch_wbt_filenames.

Usage

```
ch_wbt_catchment_onestep(
 wd,
  in_dem,
  pp_sf,
  sink_method = "breach_leastcost",
  dist = NULL,
  check_catchment = TRUE,
  threshold = NULL,
  snap_dist = NULL,
  cb_colour = "red",
  pp_colour = "red",
  channel_colour = "blue",
  contour_colour = "grey",
  plot_na = TRUE,
  plot_scale = TRUE,
  na_location = "tr",
  scale_location = "bl",
  . . .
)
```

Arguments

wd	Name of working directory.
in_dem	File name for original DEM.
pp_sf	Vector containing pour points.
sink_method	Method for sink removal as used by ch_wbt_removesinks.
dist	Maximum search distance for breach paths in cells. Required if sink_method = "breach leastcost".

54

check_catchment

	If TRUE (the default) ch_checkcatchment will be called after the catchment is created.
threshold	Threshold for channel initiation.
snap_dist	Maximum pour point snap distance in map units.
cb_colour	Colour for catchment outline. Default is "red".
pp_colour	Colour for catchment pour points. Default is "red".
channel_colour	Colour for channel. Default is "blue".
contour_colour	Colour for contours Default is "grey".
plot_na	If TRUE (the default) a north arrow is added to the plot.
plot_scale	If TRUE (the default) a scale bar is added to the plot.
na_location	Location for the north arrow. Default is 'tr', i.e. top-right.
<pre>scale_location</pre>	Location for the scale bar. Default is 'bl', i.e. bottom-left.
	Extra parameters for ch_wbt_removesinks.

Value

Returns an **sp** object of the delineated catchment.

Author(s)

Dan Moore and Kevin Shook

See Also

ch_wbt_filenames

```
# Not tested automatically as requires installation of Whitebox
library(raster)
test_raster <- ch_volcano_raster()
dem_raster_file <- tempfile(fileext = c(".tif"))
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
wd <- tempdir()
pourpoint_file <- tempfile("volcano_pourpoints", fileext = ".shp")
pourpoints <- ch_volcano_pourpoints(pourpoint_file)
catchment <- ch_wbt_catchment_onestep(wd = wd, in_dem = dem_raster_file,
pp_sf = pourpoints, sink_method = "fill", threshold = 1, snap_dist = 10)
```

ch_wbt_channels

Description

Generate stream network

Usage

```
ch_wbt_channels(
   fn_flowacc,
   fn_flowdir,
   fn_channel_ras,
   fn_channel_vec,
   threshold = NULL,
   ...
)
```

Arguments

fn_flowacc	File name for flow accumulation grid.
fn_flowdir	File name for flow direction grid.
fn_channel_ras	File name for raster version of channel network.
fn_channel_vec	File name for vector version of channel networks.
threshold	Threshold for channel initiation.
	Other parameters for whitebox function wbt_extract_streams

Value

Returns a sf vector object of the stream channels.

Author(s)

Dan Moore

Examples

```
# Not tested automatically as requires installation of Whitebox
library(raster)
test_raster <- ch_volcano_raster()
dem_raster_file <- tempfile(fileext = c(".tif"))
no_sink_raster_file <- tempfile("no_sinks", fileext = c(".tif"))
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
```

remove sinks

ch_wbt_filenames

```
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")
# get flow accumulations
flow_acc_file <- tempfile("flow_acc", fileext = c(".tif"))
flow_acc <- ch_wbt_flow_accumulation(no_sink_raster_file, flow_acc_file)
# get flow directions
flow_dir_file <- tempfile("flow_dir", fileext = c(".tif"))
flow_dir <- ch_wbt_flow_direction(no_sink_raster_file, flow_dir_file)
channel_raster_file <- tempfile("channels", fileext = c(".tif"))
channel_vector_file <- tempfile("channels", fileext = c(".tif"))
channels <- ch_wbt_channels(flow_acc_file, flow_dir_file, channel_raster_file, channel_vector_file, 1)
plot(channels)</pre>
```

ch_wbt_filenames Creates names for Whitebox function input and output files

Description

Creates a list of the files used for inputs and outputs by the Whitebox functions. This function needs to be called before calling any of the other Whitebox (i.e. those prefixed by cd_wbt) functions. If the file names are not specified, default names will be used. All raster files are TIFF (.tif), all vector files are shapefiles (.shp).

Usage

```
ch_wbt_filenames(
  wd = NULL,
  fn_dem = "dem.tif",
  fn_dem_fsc = "dem_fsc.tif",
  fn_flowacc = "flow_acc.tif",
  fn_flowdir = "flow_dir.tif",
  fn_channel_ras = "channel.tif",
  fn_channel_vec = "channel.shp",
  fn_catchment_ras = "catchment.tif",
  fn_pp = "pp.shp",
  fn_pp = "pp.snp",
  fn_pp_snap = "pp_snap.shp"
```

)

wd	Required. Name of working directory.
fn_dem	File name of input DEM. Default is 'dem.tif'.

fn_dem_fsc	File name for dem after filling single-cell pits. Default is 'dem_fsc.tif'.	
fn_dem_ns	File name for dem removing sinks. Default is 'dem_ns.tif'.	
fn_flowacc	File name for DEM flow accumulation grid Default is 'flow_acc.tif'.	
fn_flowdir	File name for DEM flow direction grid. Default is 'flow_dir.tif'.	
<pre>fn_channel_ras</pre>	File name for raster version of channel network. Default is 'channel.tif'.	
<pre>fn_channel_vec</pre>	File name for vector version of channel networks. Default is 'channel.shp'.	
fn_catchment_ras		
	File name for raster version of catchment. Default is 'catchment.tif'.	
fn_catchment_vec		
	File name for vector version of catchment. Default is 'catchment.shp'.	
fn_pp	File name for pour points (input). Vector file. Default is 'pp.shp'.	
fn_pp_snap	File name for pour points after snapping to channel network. Vector file. Default is 'pp.shp'.	

Returns a list of the input and output file names

Author(s)

Dan Moore

Examples

wbt_file_names <- ch_wbt_filenames(getwd())</pre>

ch_wbt_flow_accumulation

Creates flow accumulation grid file

Description

Creates flow accumulation grid file

Usage

```
ch_wbt_flow_accumulation(fn_dem_ns, fn_flowacc, return_raster = TRUE)
```

fn_dem_ns	File name of dem with sinks removed.
fn_flowacc	File name for flow accumulation grid to be created.
return_raster	If TRUE (the default), the flow accumulation grid will be returned as a raster object, in addition to being written to 'fn_flowacc'. If FALSE, the output file will still be created but a NULL value is returned.

If return_raster = TRUE, the flow accumulation grid will be returned as a raster object, otherwise NULL is returned.

Author(s)

Dan Moore

Examples

```
# Not tested automatically as requires installation of Whitebox
library(raster)
test_raster <- ch_volcano_raster()
dem_raster_file <- tempfile(fileext = c(".tif"))
no_sink_raster_file <- tempfile("no_sinks", fileext = c(".tif"))
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")
# get flow accumulations
flow_acc_file <- tempfile("flow_acc", fileext = c(".tif"))</pre>
```

```
flow_acc <- ch_wbt_flow_accumulation(no_sink_raster_file, flow_acc_file)
plot(flow_acc)</pre>
```

ch_wbt_flow_direction Creates flow direction grid file

Description

Creates flow direction grid file

Usage

```
ch_wbt_flow_direction(fn_dem_ns, fn_flowdir, return_raster = TRUE)
```

fn_dem_ns	File name of dem with sinks removed.
fn_flowdir	File name for flow direction grid to be created.
return_raster	Should a raster object be returned?

If return_raster = TRUE (the default), the flow direction grid will be returned as a raster object, in addition to being written to 'fn_flowdir'. If return_raster = FALSE, the output file will still be created but a NULL value is returned.

Author(s)

Dan Moore

Examples

```
# Not tested automatically as requires installation of Whitebox
library(raster)
test_raster <- ch_volcano_raster()
dem_raster_file <- tempfile(fileext = c(".tif"))
no_sink_raster_file <- tempfile("no_sinks", fileext = c(".tif"))
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")
# get flow directions
flow_dir_file <- tempfile("flow_dir", fileext = c(".tif"))
flow_dir <- ch_wbt_flow_direction(no_sink_raster_file, flow_dir_file)
plot(flow_dir)
```

ch_wbt_pourpoints Snap pour points to channels

Description

Pour points describe the outlets of sub-basins within a DEM. To use the pour points to delineate catchments, they must align with the drainage network. This function snaps (forces the locations) of pour points to the channels.

Usage

```
ch_wbt_pourpoints(
   pp_sf = NULL,
   fn_flowacc,
   fn_pp,
   fn_pp_snap,
   check_crs = TRUE,
   snap_dist = NULL,
   ...
)
```

Arguments

pp_sf	sf object containing pour points. These must be supplied by the user. See the code in ch_volcano_pourpoints for an example of creating the object.
fn_flowacc	Name of file containing flow accumulations.
fn_pp	File name to create un-snapped pour points.
fn_pp_snap	File name for snapped pour points.
check_crs	If TRUE the projections of the pour points and flow accumulation files will be checked to ensure they are identical.
snap_dist	Maximum snap distance in map units.
	Additional parameters for whitebox function wbt_snap_pour_points.

Value

Returns a sf object of the specified pour points snapped to the channel network.

Author(s)

Dan Moore

See Also

ch_volcano_pourpoints

```
# Not tested automatically as requires installation of Whitebox
library(raster)
test_raster <- ch_volcano_raster()
dem_raster_file <- tempfile(fileext = c(".tif"))
no_sink_raster_file <- tempfile("no_sinks", fileext = c(".tif"))</pre>
```

```
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
```

```
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")</pre>
```

```
# get flow accumulations
flow_acc_file <- tempfile("flow_acc", fileext = c(".tif"))
flow_acc <- ch_wbt_flow_accumulation(no_sink_raster_file, flow_acc_file)</pre>
```

```
# get pour points
pourpoint_file <- tempfile("volcano_pourpoints", fileext = c(".shp"))
pourpoints <- ch_volcano_pourpoints(pourpoint_file)
snapped_pourpoint_file <- tempfile("snapped_pourpoints", fileext = c(".shp"))
snapped_pourpoints <- ch_wbt_pourpoints(pourpoints, flow_acc_file, pourpoint_file,
snapped_pourpoint_file, snap_dist = 10)</pre>
```

ch_wbt_removesinks *Removes sinks from a DEM*

Description

Sinks are removed from a DEM using one of several methods. The raster file types supported are listed in Spatial_hydrology_functions.

Usage

```
ch_wbt_removesinks(
    in_dem,
    out_dem,
    method = "breach_leastcost",
    dist = NULL,
    fn_dem_fsc = NULL,
    ...
)
```

Arguments

in_dem	File path for original dem. Required.
out_dem	File path for dem after removing sinks.
method	Method for removing sinks. Default method is 'breach_leastcost'. Other methods include 'breach', 'fill', 'fill_pd' (Planchon and Darboux), and 'fill_wl' (Wang and Liu).
dist	Maximum search distance for breach paths in cells. Required if method = "breach_leastcost".
fn_dem_fsc	File path for dem after removing single-cell pits.
	Additional arguments to be passed to functions to remove sinks.

Value

Returns a raster object containing the processed dem.

Author(s)

Dan Moore

```
# Not tested automatically as requires installation of Whitebox
ch_wbt_check_whitebox()
library(raster)
test_raster <- ch_volcano_raster()
dem_raster_file <- tempfile(fileext = c(".tif"))
no_sink_raster_file <- tempfile("no_sinks", fileext = c(".tif"))</pre>
```

ch_wtr_yr

```
# write test raster to file
writeRaster(test_raster, dem_raster_file, format = "GTiff")
# remove sinks
removed_sinks <- ch_wbt_removesinks(dem_raster_file, no_sink_raster_file, method = "fill")</pre>
```

ch_wtr_yr

Designation of the water year

Description

Display water year

Usage

```
ch_wtr_yr(dates, start_month = 10)
```

Arguments

dates	A vector of dates with actual year
start_month	Month in which the year starts (defaults to October)

Value

Year starting in start_month

Source

http://stackoverflow.com/questions/27626533/r-create-function-to-add-water-year-column

```
date <- seq(as.Date("1910/1/1"), as.Date("1912/1/1"), "days")
wtr_yr_date <- ch_wtr_yr(dates=date, start_month=10)
data.frame(wtr_yr_date, date)</pre>
```

flowAtlantic

Description

Contains the annual maxima of 45 hydrometric stations found in the region '01' of Water Survey of Canada. In additional to the annual maxima, the output list includes catchment descriptors (lon-gitude, latitude, basin area, mean annual precipitation) and the geographical distance between each station.

Usage

flowAtlantic

Format

An object of class list of length 2.

Author(s)

Martin Durocher

Source

https://wateroffice.ec.gc.ca/

HYDAT_list

List of Water Survey of Canada hydrometic stations.

Description

A dataframe of station information, as extracted from HYDAT using ECDataExplorer.

Usage

```
HYDAT_list
```

Format

A dateframe with a row for each station and 20 columns.

Details

Variables:

Station StationID StationName Station Name HYDStatus Active or Discontinued **Prov** Province Latitude Longitude DrainageArea km² Years Number of years with data From Start Year To End Year Reg. Regulated Flow If TRUE/Yes Level If TRUE/Yes Sed If TRUE/Yes **OperSched** Continuous or Seasonal **RealTime** If TRUE/Yes RHBN If TRUE/Yes the station is in the reference hydrologic basin network Region ECCC Region Datum Reference datum **Operator** Operator

Source

Water Survey of Canada

Spatial_hydrology_functions

Spatial Hydrology functions

Description

These functions perform spatial analyses important in hydrology. All of the functions with the prefix ch_wbt require the installation of the package **Whitebox**. The functions include:

ch_wbt_removesinks Removes sinks from a DEM by deepening drainage network

ch_wbt_fillsinks Removes sinks from a DEM by filling them

ch_wbt_catchment Generates catchment boundaries for a conditioned DEM based on specified points of interest ch_wbt_channels Generates a drainage network from DEM ch_wbt_flow_accumulation Accumulates flows downstream in a cathement ch wbt flow direction Calculated flow directions for each cell in DEM ch_wbt_pourpoints Snaps pour points to channel ch_wbt_catchment_onestep Performs all catchment delineations in a single function ch_contours Creates contour lines from DEM ch_checkcatchment Provides a simple map to check the outputs from ch_saga_catchment ch_checkchannels Provides a simple map to check the outputs from ch_saga_channels ch_volcano_raster Returns a raster object of land surface elevations The Whitebox functions support the following file types for raster data: type extension GeoTIFF *.tif. *.tiff **Big GeoTIFF** *.tif, *.tiff Esri ASCII *.txt, *.asc Esri BIL *.flt, *.hdr GRASS ASCII *.txt, *.asc Idrisi *.rdc, *.rst

SAGA Binary *.sdat, *.sgrd Surfer ASCII *.grd Surfer Binary *.grd Whitebox *.tas, *.dep

StatisticalHydrology-functions Statistical analysis functions

Description

These functions perform statistical analyses

ch_binned_MannWhitney Compares two time periods of data using Mann-Whitney test

ch_fdcurve Finds flow exceedence probabilities

ch_get_peaks Finds peak flows over a specified threshold

Visualization-functions

Visualization functions

Description

These functions are primarily intended for graphing, although some analyses may also be done.

ch_booth_plot Plot of peaks over a threshold

ch_flow_raster Raster plot of streamflows

ch_flow_raster_qa Raster plot of streamflows with WSC quality flags

ch_flow_raster_trend Raster plot and simple trends of observed streamflows

ch_hydrograph_plot Plots hydrographs and/or precipitation

ch_polar_plot Polar plot of daily streamflows

ch_regime_plot Plots the regime of daily streamflows

Index

* colour ch_col_transparent, 16 * datasets CAN01AD002, 4 CAN05AA008, 5 flowAtlantic. 64 HYDAT_list, 64 * data ch_date_subset, 19 * date ch_date_subset, 19 * plot ch_booth_plot, 8 ch_flow_raster_trend, 25 ch_polar_plot, 34 * subset ch_date_subset, 19 * transparency ch_col_transparent, 16

Basic_data_manipulation_functions, 4

ch_binned_MannWhitney, 6, 34, 35, 37, 47

CAN01AD002, 4

CAN05AA008, 5

ch_axis_doy, 5

ch_booth_plot, 8, 29

ch_catchment_hyps, 9

ch_clear_wd, 15, 18

ch_create_wd, *16*, 18

ch_contours, 17

ch_cut_block, 19
ch_date_subset, 19

ch_doys, 21

ch_fdcurve, 22

ch_checkcatchment, 11, 14

ch_checkchannels, 12, 13

ch_col_transparent, 16

ch_decades_plot, 7, 20, 20

ch_flow_raster, 23, 24, 26

ch_flow_raster_qa, 23, 24 ch_flow_raster_trend, 23, 24, 25, 47 ch_get_ECDE_metadata, 27, 50 ch_get_peaks, 8, 28 ch_get_url_data, 29 ch_get_wscstation, 31 ch_hydrograph_plot, 32 ch_polar_plot, 7, 34, 37 ch_polar_plot_prep, 7, 34, 35, 35 ch_qa_hydrograph, 37 ch_read_AHCCD_daily, 38, 40 ch_read_AHCCD_monthly, 39, 39 ch_read_ECDE_flows, 23, 24, 40 ch_regime_plot, 6, 41 ch_rfa_distseason, 42, 46 ch_rfa_extractamax, 43 ch_rfa_julianplot, 44 ch_rfa_seasonstat, 43, 45, 45 ch_slice, 46 ch_sub_set_Years, 47 ch_tidyhydat_ECDE, 48, 50 ch_tidyhydat_ECDE_meta, 49, 49 ch_volcano_pourpoints, 51, 61 ch_volcano_raster, 51, 52 ch_wbt_catchment, 52 ch_wbt_catchment_onestep, 53, 54 ch_wbt_channels, 56 ch_wbt_filenames, 55, 57 ch_wbt_flow_accumulation, 58 ch_wbt_flow_direction, 59 ch_wbt_pourpoints, 51, 60 ch_wbt_removesinks, 62 ch_wtr_yr, 63 CSHShydRology-package, 3 flowAtlantic, 64 HYDAT_list, 64

points, 44

INDEX

Spatial_hydrology_functions, 62, 65 StatisticalHydrology-functions, 66

 $\label{eq:Visualization-functions, 67} Visualization-functions, 67$